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Abstract – In this work the formulation and solution of two inverse problems are presented for the determination 
of physico-chemical parameters in order to characterize adsorption columns to be used in simulated moving beds 
for biotechnological processes. For the direct problem the Thomas simplified model is used when the axial 
dispersion may be neglected, and for the other cases the equilibrium transport dispersive model is employed. An 
implicit formulation is used for the inverse problem in which we seek to minimize the functional of squared 
residues between calculated and experimental values of the solute concentration at the exit of the adsorption 
column. Parametric and sensitivity analyses are performed in order to determine which parameters present higher 
sensitivity. 
 
1. INTRODUCTION 
Recent developments in the pharmaceutical industry have led to the discovery of increasingly complex 
substances, and a large number of drugs going to market at the moment are chiral substances [1] with optical 
isomers.  Even though the physical properties of optical isomers are very similar, their effects on the human 
organisms may be drastically different, possibly causing harmful side effects. The control agencies are therefore 
requiring more careful and profound studies on racemic mixtures. 
 There is a growing demand for efficient methods to purify optical isomers [10], with one of the most 
promising alternatives being the simulated moving beds (SMB) chromatography. 
 For the full understanding of the operation of SMBs, and a possible scale-up to industrial production, it 
requires a knowledge of mass transfer mechanisms and their dependence on the physico-chemical and process 
parameters. The first step in that direction consists of the characterization of adsorption columns. 
 In order to design and optimize preparative separations, the knowledge of the adsorption isotherms is of 
primary importance, and several techniques have been developed for the determination of such thermodynamic 
functions [9,12,17], with a growing interest towards the inverse problem approach in which the experimental 
work is coupled to a more comprehensive computational modeling of the phenomena of interest [3,6,7,21-23]. 
 In the present work we model the liquid-solid adsorption phenomenon, which takes place inside an 
adsorption column for biomolecules separation. For the direct problem solution we use the equilibrium 
dispersive (E-D) and Thomas models, with the latter being employed when the effects of axial dispersion are 
negligible in comparison to the other mass transfer mechanisms [6,9]. 
 The inverse problem is formulated implicitly in which we seek to minimize the norm of the squared 
residues between calculated and measured values for the breakthrough curves, i.e. the time dependent values of 
the biomolecules concentration at the exit of the adsorption column. 
 
2. MATHEMATICAL FORMULATION AND SOLUTION OF THE DIRECT PROBLEM 
 
2.1 Mathematical Modeling  
In Figure 1 a schematical representation is given of an adsorption column. A fixed bed of adsorbent resins 
composes the column. A mobile phase, composed by a diluted solution of the adsorbate of interest 
(biomolecule), percolates through the resin bed (fixed phase). The adsorbate is transferred from the bulk of the 
solution to the vicinity of the resin particles, i.e. mass transfer through the liquid film, and then it diffuses to the 
interior of the particle pores being then adsorbed by the solid matrix.  
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Figure 1. Schematical representation of an adsorption column. 

 
  The mathematical model for the chromatography process is based on the mass balance for the two phases; 
one for the mobile phase that flows through the macro scale porous fixed resin bed, and the other for the resin 
particles involving the micro scale porous solid matrix [8].  
 Here we consider the following hypothesis and simplifications [5]: (i) the adsorption process is isothermic; 
(ii) the mobile phase is a diluted solution; (iii) the mobile phase velocity is constant; (iv) the fixed bed is 
composed of spherical porous adsorbent particles of uniform size; (v) the concentration gradient in the radial 
direction is negligible; (vi) there is a local equilibrium between the porous surface and the liquid inside the 
macro porous; (vii) the axial dispersion coefficient is constant; (viii) the diffusion inside the particles is 
described by the diffusion inside the pores; (ix) the external mass transfer from the bulk of the liquid to the 
particles is described by a film mass transfer. 
 
 
Adsorbent mass balance (fixed phase) A simplified representation of the mass transfer mechanisms in the solid 
phase [16] considers a time dependent average concentration iC , and the resistances to the mass transfer are 
represented by a global mass transfer coefficient kl . Being the adsorbate concentration in the bulk of the liquid 
phase represented by C, the mass balance in the adsorbent spherical particles is written as 
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where εi is the particle porosity, qi is the adsorbate concentration in the solid matrix, and R is the radius of the 
adsorbent particles. 
 The mass transfer rate from the solution to the fixed phase is given by [4] 
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where  is the adsorbate concentration,  is the maximum adsorbate concentration which the adsorbent may 
adsorb (maximum adsorption capacity), k1 is the adsorption rate constant, and k2 is the desorption rate constant. 
Further, the dissociation rate constant  is defined as  
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 Considering a very fast adsorption rate on the surface, an equilibrium can be reached , [19], 
and from eqn. (2) we write 
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which leads to the nonlinear Langmuir isotherm [11], 
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 Replacing C* by iC , we obtain from eqns (1) and (5), 

F06
2



( ) ( )iRr
li

id

dm
i CC

R
k

dt
Cd

Ck

kq
−=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

⋅
+ =

3
2ε   (6)

 We consider that at the beginning of the process there is no adsorbate in the resin particles. Therefore, 
 iC = 0   for   t = 0     (7)

 
Column Mass Balance (mobile phase) A mathematical model which takes into account mass transfer in the 
liquid film,  axial dispersion and a constant flow rate [8] is given by 
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where ε represents the bed porosity, Dax the  axial dispersion coefficient, u the constant linear velocity and x 
represents the axial distance  from the entrance of the column, see Figure 1. The column has a total length h. 
 Using the same assumptions considered for the mass balance in the fixed phase, Santacesaria et al. [16] 
derived an approximation for the last term of eqn. (8) arriving at  
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 Here we use the Danckwert boundary conditions 
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and the initial condition 
C = 0,  for  t = 0  ,     in   hx ≤≤0     (12)

 
2.2 Thomas Model 
 For the particular case in which the axial dispersion may be neglected, i.e. Dax = 0, and the adsorbate inflow 
is constant, i.e. C0 = constant, the adsorption problem described in the previous section has an analytical solution 
[2,4,15] and it was first derived by Thomas [20]. The adsorbate concentration in the mobile phase at the exit of 
the adsorption column, x = h, is given by 
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where   
do kC /1+=σ  (14)
flAhkq cm /1=η  (15)

( ) hqACktflT mcod /+=  (16)
 fl is the volumetric flow rate through the column, and the function J(a, b) is given by 
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where I0 is the modified Bessel function of the first kind and of order zero. 
 The function J(a,b) may be approximated by an asymptotic series whose two first terms are [20] given by  
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2.3 Equilibrium Dispersive Model (E-D) 
 The E-D model given by eqns (6,7,9-12), does not possess a known analytical solution, and therefore a 
numerical approximation is used. In the present work we use the finite-difference method. For the time 
derivative we use a forward-difference approximation. For the first derivate in space we use a backward-
difference approximation, and for the second derivate in space we use a central-difference approximation. 
 Defining the following dimensionless variables: 
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the following approximation is obtained for the mass balance in the mobile phase  
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where the index n, with n = 0,1,…, Nn, is related to the discretization of the time domain, while the index j, with 
j = 0,1,…, Nj is related to the discretization of the spatial domain. τ∆∆ andY  are related to the spatial and time 
steps, respectively. 
 Using a simplification on the Dankwets boundary conditions [8] results in: 
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and the initial condition is written as 

00 =Φ j     for    j=1, 2,......,Nj (23)
 
The discretized approximation for the mass balance in the fixed phase is given by 
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with the initial condition  
00 =Θ j     for the     j=1, 2,......,Nj (25)

The resulting system of linear algebraic equations was solved using the Gauss- Seidel iterative method with 
the initial guess the values of the concentration available at the previous time step. 

 
3. MATHEMATICAL FORMULATION AND SOLUTION OF THE INVERSE PROBLEM 
In the present work we are interested in determining the parameters of the adsorption isotherm,  and , or 
even other parameters such as the bed porosity ε, and the axial dispersion coefficient, Dax. The unknown 
parameters are then grouped in a vector of unknows such as 

dk mq
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 (26)
 We consider as experimental data the adsorbate concentration in the liquid phase at the exit of the column, 
at x = h, i.e. ( )itCexp , i = 1,2,….,Ne, where Ne is the total number of experimental data. 
 As there is more experimental data than unknowns, the inverse problem is formulated implicitly as an 
optimization problem in which we seek to minimize the cost function given by the summation of the squared 
residues between the calculated and measured values for the concentration at the end of the adsorption column. 
Using the dimensionless concentration defined in eqn. (19a), we write  
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where the elements of the vector of residues F are given by 
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  Writing the critical point equation, using a Taylor expansion, and adding a damping factor, λ, to the diagonal 
of the resulting information matrix, we derive the Levenberg-Marquardt method: 
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and the elements of the Jacobian matrix J are given by  
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l is the iteration index, and Nu is the total number of unknowns. 
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 In order to solve the inverse problem we start with an initial guess 
0

Z . Then eqn. (29) is solved for 
0

Z∆ , 

and a new estimate, 
1

Z  is obtained using eqn. (30b). The iterative procedure for calculating the corrections 
l

Z∆ with eqn. (29) and the new estimates for the unknowns with eqn. (30b) is repeated until a convergence 
criterion such as the following: 
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is satisfield, where δ is a tolerance, say 10-4. 
 Here the value of the damping parameter λl was varied by way of the iterative procedure according to the 
original proposal of Marquardt [13]. 
 
4. RESULTS AND DISCUSSIONS 
 
4.1 Thomas model 

In Table 1 the reference values for the process and physico-chemical parameters used in the test cases with 
the Thomas model are presented. The values shown for the parameters ,  and k1, in the second, third and 
fourth columns of Table 1, were obtained by Chase [4], Pereira [14] and Silva [18], respectively, using several 
experimental runs. 

dk mq

 
  

Table 1: Process and physico-chemical parameters used in the inverse problems with the Thomas model. 
Parameters Case 1 [4] Case 2 [14] Case 3 [18] 

Substance Lisozyme β -Galactosidase Inulinase 

h - column height (cm) 10.4 3.2 8.0 

cA – column cross section (cm2) 0.785 0.196 0.196 
fl – volumetric flow rate (ml/min) 1.0 1.0 0.35 

oC - adsorbate concentration at the column inlet 0.1 mg/ml 0.104 mg/ml 1.45 mg/ml 

mq – maximum adsorption capacity 14 mg/ml 32.98 mg/ml 4165.69 UA/ml. g 

dk – dissociation rate constant 0.025 mg/ml 0.04 mg/ml 94.80 UA/ml 

1k – adsorption rate constant 0.20 ml/mg. min 3.68 ml/mg. min 0.005 ml/UA. min 
 

 Before we attempted to use the real experimental data of Chase [4], Pereira [14] and Silva [18], in order to 
solve the inverse problem we performed a sensitivity analysis. 

In Figure 2 the scaled (or modified) sensitivity coefficients are presented, namely  
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for the parameters ,  and k1 for the three cases shown in Table 1. mq dk
Using the experimental data of Chase [4] and the Thomas model for the direct problem solution, the inverse 
problem was solved using Levenberg-Marquardt method for the determination of { }md qkZ ,= . In Table 2 the 
values obtained by Chase (Case 1 in Table 1) and the values obtained in the present work are presented. The 
value of k1 was considered fixed at 0.2 ml/mg.min. 
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Figure 2. Sensitivity coefficients for cases 1-3 in Table 1. 
 
 

Table 2: Parameters for lisozyme Langmuir´s adsorption isotherm, Case 1 (Table 1). 
Source dk  (mg / ml) mq    (mg / ml) 

Inverse Problem solution 0.029 14 
Chase [4] 0.025 14 

 
 The estimated value for  is in excellent agreement with the value presented by Chase, and a 16% 

deviation is observed for the estimated value for . This is probably due to the lower sensitivity to this 
parameter as may be seen in Figure 2(a). 

mq

dk

 In Figure 3(a) are presented the experimental data for lisozyme breakthrough curves and Chase´s model 
solution [4], as well as the breakthrough curve calculated with Thomas model and the values estimated for  

and  with the solution of the inverse problem, see Table 2. 
dk

mq
In Figure 3(b) is presented the Langmuir adsorption isotherm for lisozyme calculated using eqn. (5) and the 

estimated values for  and  shown in Table 2. Also presented are the Chase experimental data and the 
adsorption isotherm obtained in [4]. 

dk mq
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Figure 3. (a) Breakthrough curves, and (b) adsorption isotherm, for lisozyme.   

  
 Results shown in Table 2 and Figures 3(a) and 3(b) demonstrate the good quality of the solution obtained. 
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 Using the experimental data of Pereira [17], and the Thomas model for the solution of the direct problem, 
the estimated values for  and  shown in Table 3 were obtained. dk mq

 
Table 3: Parameters for β -Galactosidase, Case 2 (Table 1).  

 dk  (mg / ml) mq    (mg / ml) 
Inverse problem solution 0.123 33.0 
Pereira [17] 0.04 32.98 

 
 The value of k1 was considered fixed at 3.0 ml/mg.min. This value was chosen after a parametric analysis 
was performed starting at the value given by Pereira (Case 2 in Table 1). 
 Here the estimate for  was good and the estimate for  was poor. Again, this behavior was expected 
because of the sensitivity analysis results shown in Figure 2(b). 

mq dk

 In Figure 4 the Langmuir adsorption isotherm for β -Galactosidase calculated using eqn. (5), and the 
estimated values for  and  shown in Table 3, are presented. In the figure the experimental data and the 
adsorption isotherm obtained in [14] is also shown. 

dk mq

 Using the experimental data of Silva [18], and the Thomas model for the solution of the direct problem, the 
estimated values for  and  shown in Table 4 were obtained. dk mq

 
Table 4: Parameters for inulinase, Case 3 (Table 1).  

 
dk   (UA / ml) mq   (UA / ml. g). 

Inverse problem solution 253.77 5002.87 
Silva [18] 94.80 4165.69 

 
 The value of k1 was considered fixed in 0.001 ml/UA.min. This value was chosen after a parametric 
analysis was performed starting at the value given by Silva (Case 3 in Table 1). 
 Here both the estimates for  and  are poor, probably due to the fact that they may be correlated as 
shown in Figure 2(c). 

dk mq

 In Figure 5 the Langmuir adsorption isotherm for inulinases, calculated using eqn. (5), and estimated values 
for  and  shown in Table 4 are presented. The experimental data and the adsorption isotherm obtained in 
[18] are also shown. 

dk mq
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Figure 4. β -Galactosidase adsorption isotherm.  Figure 5. Inulinase adsorption isotherm. 

 
 From Tables 3 and 4 and Figures 4 and 5 it can be seen that there is a large discrepancy between the results 
presented in [17, 18] and those obtained in the present work. In addition to the difficulties related to the 
sensitivity to the parameters of interest,  and  , we observe that for dk mq β -Galactosidase and inulinase the 
effects due to the axial dispersion can not be neglected in comparison to the other mass transfer phenomena, and 
therefore the Thomas model can not be used for the solution of the direct problem. In the next section the results 
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for the estimation of the bed porosity and the axial dispersion coefficient for inulinase using the equilibrium 
dispersive model for the direct problem are presented. 
 
4.2 Equilibrium (E-D) Dispersive Model 

In Table 5 the reference values for the process and physico-chemical parameters used in the test case with 
the E-D model are presented. 

We then performed a parametric analysis by varying the values of ,axD ε , iε , R, ,  and  by 
, and observing the effects on the breakthrough curves. The highest sensitivities were observed for the 

axial dispersion coefficient, ,and the bed porosity, 

mq dk 1k
5%±

axD ε , as may be observed in Figures 6(a) and 6(b). 
 

Table 5: Process and physico-chemical parameters used in the inverse problem  
with the Equilibrium Dispersive Model (E-D). 

 
Parameters Case 3 [18] 

Substance Inulinase 
h - Column height (cm) 8.0 

cA – Column cross section (cm2) 0.785 
f – Volumetric flow rate (ml/min) 0.25 

oC - Adsorbate concentration at the column inlet (UA/ml) 15.6 

mq – Maximum adsorption capacity (UA/ml.g) 4165.69 

dk – Dissociation rate constant (UA/ml) 94.68 
kl – Global mass transfer coefficient (cm/min) 6 x 10-6  
R – Radius of the adsorbent particles (cm) 0.0045 
ε – Bed porosity 0.557 
εp – Particle porosity 0.501 
Dax – Axial dispersion coefficient (cm2/min) 0.0273 
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Figure 6. Effects on the inulinases breakthrough curves due to a variation of on %5±
(a)  the axial dispersion coefficient, and (b) the bed porosity. 

 
 Starting with the values obtained by Silva [18], ε = 0.557 and = 0.0273 cm²/min, we have performed a 
few runs of the direct problem with the E-D model trying to find a better fit for the experimental data.  

axD

 The results for all runs are shown in Table 6, from which it can be seen that the values ε = 0.55 and  = 

0.0252 cm²/min seem to provide a better fit with a slightly smaller value for the cost function 

axD
( )ZQ  given by 

eqn. (27). 
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 In Figure 7 the experimental data for the inulinase breakthrough curves and the solution of Silva using the 
E-D model [18], as well as the breakthrough curve calculated with the E-D model and the values estimated for ε 
and according to Table 6 are presented. axD
 

         Table 6: Cost function results, ( )ZQ , for the inulinase test case 4 in Table 5 and  

         different values for the bed porosity ε and axial dispersion coefficient, . axD
ε Dax (cm2/min.) ( )ZQ , Eq. (27) 

0.557 0.0273 0.04 
0.5 0.0240 1.53 
0.5 0.0300 2.8 
0.5 0.0180 2.2 
0.6 0.0300 1.23 

0.55 0.0270 0.12 
0.55 0.0252 0.03 
0.55 0.0246 0.05 
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Figure 7. Breakthrough curves for inulinase, Case 4 in Table 5. The inverse problem solution was obtained with 
the equilibrium dispersive model and ε = 0.55 and  = 0.0252 cm²/min. axD
 
5. CONCLUSIONS 

The use of the inverse problem approach for the estimation of the adsorption isotherm may be competitive 
in comparison to the other methods available, such as the frontal analysis, mainly when the adsorbate is of high 
cost. With the measurements of the adsorbate concentration and a model which describes the relevant mass 
transfer phenomena involved, the present work uses the Levenberg-Marquardt method for the estimation of 
parameters related to the adsorption isotherm, the adsorption column porosity and the axial dispersion 
coefficient. 

For lisozyme the direct problem was solved using the Thomas model and for β -Galactosidase and 
inulinases the equilibrium dispersive model was used. For the first substance the effects of the axial dispersion 
were negligible in comparison to the other mass transfer phenomena, and the use of the Thomas model yielded 
good estimates for the maximum adsorption capacity. 

For the inulinases, the E-D model was required and a parametric analysis indicated the higher sensitivity to 
the bed porosity and axial dispersion coefficient. The calculated values for the breakthrough curve were in 
excellent agreement with the experimental data. 
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